Quantum Space-Time Tradeoffs for Sponge Inversion

Joseph Carolan, Alexander Poremba, Mark Zhandry

Based on [arxiv:2403.04740] and [arxiv:2410.16595]

• Let $f: \{0,1\}^* \to \{0,1\}^n$ be a uniform random function

Query Lower Bounds

- Assume that everyone has the ability to compute f
- Assume that they can only compute f on poly(n) points
- This is called the Random Oracle Model
- Essentially all practical cryptosystems are analyzed in this model

Motivation: Hash Functions

- Problem: random oracles do not exist
- Hash functions are used as "approximate random oracles"
- Current international hash standard is SHA3
- SHA3 uses the sponge to achieve domain extension

Sponge Construction

- Based on permutation (bijection $\varphi: \{0,1\}^n \to \{0,1\}^n$)
- Both φ and φ^{-1} have a public description
- Oracles can be implemented given this description:

$$O_{\varphi} |x\rangle |y\rangle = |x\rangle |y \oplus \varphi(x)\rangle$$

$$O_{\varphi^{-1}} |x\rangle |y\rangle = |x\rangle |y \oplus \varphi^{-1}(x)\rangle$$

- ullet We model adversaries as having black-box access $O_{arphi}, O_{arphi^{-1}}$
- Treat φ as an ideal random permutation
- One step down the abstraction hierarchy

Sponge Security

- Classically, the sponge is "as good as" a random oracle
 (→) One way, collision resistant, . . .
- With quantum queries to φ, φ^{-1} , nothing is known¹
- We have few techniques for analyzing quantum permutation problems
- Proven difficult to apply adversary/polynomial methods
- No permutation analog of compressed oracles, despite many attempts

 $^{^1}$ Partial progress for one-round [Z'21], [CP'24], [CPZ'24], [MMW'24] or without φ^{-1} queries [CBHSU'17], [CMSZ'19]

A Starting Point

Intro and Motivation

Double Sided Zero Search (DSZS) [Unruh'21], [Unruh'23]

In: Queries to permutation φ and φ^{-1} on 2n bits

Out: A "zero pair" (x, y) s.t.

$$\varphi(x||0^n)=y||0^n$$

- Exhibits essential features of one-round sponge inversion
- "Even simple questions relating to (superposition access to) random permutations are to the best of our knowledge not in the scope of existing techniques, such as the following conjecture:" [Unruh'23]

Conjecture [Unruh'21], [Unruh'23]

Solving **DSZS** requires $\Omega(\sqrt{2^n})$ quantum queries to φ, φ^{-1}

Zero Pairs Intuition

Some facts:

- Exactly one zero pair on average
- Exponentially decaying probability of more

First Result

Intro and Motivation

We prove Unruh's conjecture

Theorem [CP'24]

Finding a zero pair requires $\Omega\left(\sqrt{2^n}\right)$ quantum queries

Proof.

A worst-to-average case reduction:

- (1) Hide zero pairs at adversarial locations
- (2) Re-randomize to an average-case instance, while maintaining zero pairs (symmetrize)

Worst-Case Hardness

• In the worst case, solution may not exist!

$$\varphi_w(x||y) := x||(y \oplus 1^n)$$

Worst-Case Hardness with K solutions

- Start from permutation with no zero pairs
- Hide zero pairs in K arbitrary positions
- Inverse queries don't help, because $\varphi_w = \varphi_w^{-1}$

- Let ω, σ be random permutations that preserve suffix 0^n
- Sandwich a worst-case instance to get an average-case instance (with K zero pairs)

$$\varphi := \omega \circ \varphi_{\mathbf{w}} \circ \sigma$$

Query Lower Bounds

ooo 🕳 ooo

Symmetrization

- Let ω, σ be random permutations that preserve suffix 0^n
- Sandwich a worst-case instance to get an average-case instance (with K zero pairs)

$$\varphi := \omega \circ \varphi_{\mathbf{w}} \circ \sigma$$

Symmetrization Soundness

- Main technical insight: group theoretic picture
- Permutations preserving suffix 0ⁿ form a subgroup
- Double cosets are permutations with fixed number of zero pairs

Query Lower Bounds

Symmetrization Lemma

Multiplying by random elements of the left and right subgroups, re-randomizes over the double coset.

Proof Review

Intro and Motivation

Theorem [CP'24]

Finding a zero pair requires $\Omega\left(\sqrt{2^n}\right)$ quantum queries to φ, φ^{-1}

000000

Proof(ish):

Symmetrizing preserves the hardness!

Quantum Security of the Sponge

- For simplicity, restrict to one round
- Top wire is size r = rate
- Bottom wire is size c = capacity

Indifferentiability Definition

- Indifferentiability gives a way to lift random oracle lower bounds to concrete hash functions
- Requires simulating a permutation, given just a random oracle

Sponge Indifferentiability

- We can prove indifferentiability using symmetrization
- Idea: hide a random function inside the sponge, then symmetrize
- Let us assume that r = c for simplicity²
- To hide a function h in the Sponge:

Query Lower Bounds

• The sponge hash will be h

²we require r < c

Symmetrizing the Sponge

Intro and Motivation

Characterization Lemma [CPZ'24]

There exists double cosets $C_0, \ldots C_m = H \setminus S_{2^n} / K$ satisfying: $(\rightarrow) \pi, \pi' \in C_i$ if and only if $Sp^{\pi} = Sp^{\pi'}$

• We can symmetrize φ_h while maintaining sponge

- Our simulator is perfectly secure
- Prior work [Zhandry'21] requires a query bound, even classically

Query Lower Bounds

- Our notion also captures adversaries with inefficient pre-computation
- Implies new quantum and classical results for one round Sponge:
 - (1) **Tight** space-time tradeoffs for inversion
 - (2) Generic, composable security in any game with pre-computation
 - (3) **Tight** bounds for one-wayness, collision resistance, ...

Future Directions

- Indifferentiability of the full Sponge construction?
- (\rightarrow) This requires overcoming the **stateful simulation** barrier
- Other applications of symmetrizing over double cosets?
- Other applications of Indifferentiability with Pre-computation?
- See also concurrent work by Majenz, Malavolta, and Walter
 - (\rightarrow) Similar results to [CP'24], different techniques
 - (\rightarrow) Talk on Friday morning!

Thank you!