
Intro and Motivation Double-Sided Zero Search Query Lower Bounds Indifferentiability Conclusion

Quantum Space-Time Tradeoffs for Sponge
Inversion

Joseph Carolan, Alexander Poremba, Mark Zhandry

Based on [arxiv:2403.04740] and [arxiv:2410.16595]



Intro and Motivation Double-Sided Zero Search Query Lower Bounds Indifferentiability Conclusion

Motivation: Random Oracle Model

Let f : {0, 1}∗ → {0, 1}n be a uniform random function

Assume that everyone has the ability to compute f

Assume that they can only compute f on poly(n) points

This is called the Random Oracle Model

Essentially all practical cryptosystems are analyzed in this
model
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Motivation: Hash Functions

Problem: random oracles do not exist
Hash functions are used as “approximate random oracles”
Current international hash standard is SHA3
SHA3 uses the sponge to achieve domain extension

Image credit: https://www.vecteezy.com/free-vector/garbage-can, Garbage Can Vectors by Vecteezy

https://www.vecteezy.com/free-vector/garbage-can">Garbage Can Vectors by Vecteezy
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Sponge Construction

Based on permutation (bijection φ : {0, 1}n → {0, 1}n)
Both φ and φ−1 have a public description

Oracles can be implemented given this description:

Oφ |x⟩ |y⟩ = |x⟩ |y ⊕ φ(x)⟩
Oφ−1 |x⟩ |y⟩ = |x⟩

∣∣y ⊕ φ−1(x)
〉

We model adversaries as having black-box access Oφ,Oφ−1

Treat φ as an ideal random permutation

One step down the abstraction hierarchy
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Sponge Security

Classically, the sponge is “as good as” a random oracle

(→) One way, collision resistant, . . .

With quantum queries to φ,φ−1, nothing is known1

We have few techniques for analyzing quantum permutation
problems

Proven difficult to apply adversary/polynomial methods

No permutation analog of compressed oracles, despite many
attempts

1Partial progress for one-round [Z’21], [CP’24], [CPZ’24], [MMW’24] or
without φ−1 queries [CBHSU’17], [CMSZ’19]
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A Starting Point

Double Sided Zero Search (DSZS) [Unruh’21], [Unruh’23]

In: Queries to permutation φ and φ−1 on 2n bits
Out: A “zero pair” (x , y) s.t.

φ(x ||0n) = y ||0n

Exhibits essential features of one-round sponge inversion

“Even simple questions relating to (superposition access to)
random permutations are to the best of our knowledge not in
the scope of existing techniques, such as the following
conjecture:” [Unruh’23]

Conjecture [Unruh’21], [Unruh’23]

Solving DSZS requires Ω(
√
2n) quantum queries to φ,φ−1
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Zero Pairs Intuition

Some facts:

Exactly one zero pair on average

Exponentially decaying probability of more
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First Result

We prove Unruh’s conjecture

Theorem [CP’24]

Finding a zero pair requires Ω
(√

2n
)
quantum queries

Proof.

A worst-to-average case reduction:

(1) Hide zero pairs at adversarial locations

(2) Re-randomize to an average-case instance, while maintaining
zero pairs (symmetrize)
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Worst-Case Hardness

In the worst case, solution may not exist!

φw (x∥y) :=x∥(y ⊕ 1n)
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Worst-Case Hardness with K solutions

Start from permutation with no zero pairs

Hide zero pairs in K arbitrary positions

Inverse queries don’t help, because φw = φ−1
w
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Symmetrization

Let ω, σ be random permutations that preserve suffix 0n

Sandwich a worst-case instance to get an average-case
instance (with K zero pairs)

φ := ω ◦ φw ◦ σ
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Symmetrization Soundness

Main technical insight: group theoretic picture

Permutations preserving suffix 0n form a subgroup

Double cosets are permutations with fixed number of zero
pairs

Symmetrization Lemma

Multiplying by random elements of the left and right subgroups,
re-randomizes over the double coset.
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Proof Review

Theorem [CP’24]

Finding a zero pair requires Ω
(√

2n
)
quantum queries to φ,φ−1

Proof(ish):

Symmetrizing preserves the hardness!
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Quantum Security of the Sponge

For simplicity, restrict to one round

Top wire is size r = rate

Bottom wire is size c = capacity
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Indifferentiability Definition

Indifferentiability gives a way to lift random oracle lower
bounds to concrete hash functions

Requires simulating a permutation, given just a random oracle

REAL IDEAL
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Sponge Indifferentiability

We can prove indifferentiability using symmetrization

Idea: hide a random function inside the sponge, then
symmetrize

Let us assume that r = c for simplicity2

To hide a function h in the Sponge:

|x⟩ h(x)

|0⟩ h(x) x

The sponge hash will be h

2we require r ≤ c
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Symmetrizing the Sponge

Characterization Lemma [CPZ’24]

There exists double cosets C0, . . .Cm = H⧹S2n⧸K satisfying:
(→) π, π′ ∈ Cj if and only if Spπ = Spπ

′

We can symmetrize φh while maintaining sponge
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Summary of results

Our simulator is perfectly secure

Prior work [Zhandry’21] requires a query bound, even
classically

Our notion also captures adversaries with inefficient
pre-computation

Implies new quantum and classical results for one round
Sponge:

(1) Tight space-time tradeoffs for inversion
(2) Generic, composable security in any game with

pre-computation
(3) Tight bounds for one-wayness, collision resistance, . . .
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Future Directions

Indifferentiability of the full Sponge construction?

(→) This requires overcoming the stateful simulation barrier

Other applications of symmetrizing over double cosets?

Other applications of Indifferentiability with Pre-computation?

See also concurrent work by Majenz, Malavolta, and Walter

(→) Similar results to [CP’24], different techniques
(→) Talk on Friday morning!
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Thank you!
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