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Motivation: Random Oracle Model

Let f: {0,1}* — {0,1}" be a uniform random function

Assume that everyone has the ability to compute f

This is called the Random Oracle Model

Essentially all practical cryptosystems are analyzed in this
model

°
°
@ Assume that they can only compute f on poly(n) points
°
°



Motivation: Hash Functions

Problem: random oracles do not exist

Hash functions are used as “approximate random oracles”
Current international hash standard is SHA3

SHAS3 uses the sponge to achieve domain extension
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Sponge Construction

Based on permutation (bijection ¢ : {0,1}" — {0,1}")
Both ¢ and ¢! have a public description

Oracles can be implemented given this description:

Op [¥) |y) =) Iy @ ¢(x))
Op-1|x) ly) =1x) [y @ 97 (x))

We model adversaries as having black-box access O, O -1

Treat ¢ as an ideal random permutation

One step down the abstraction hierarchy
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Sponge Security

o Classically, the sponge is “as good as” a random oracle
(—) One way, collision resistant, ...

e With quantum queries to ¢, ¢!, nothing is known?

@ We have few techniques for analyzing quantum permutation
problems

e Proven difficult to apply adversary/polynomial methods

@ No permutation analog of compressed oracles, despite many
attempts

!Partial progress for one-round [Z'21], [CP'24], [CPZ'24], [MMW'24] or
without ¢ ™! queries [CBHSU'17], [CMSZ'19]
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A Starting Point

Double Sided Zero Search (DSZS) [Unruh'21], [Unruh'23]

1

In: Queries to permutation @ and =+ on 2n bits

Out: A “zero pair” (x,y) s.t.
p(x0") = y[|0"

@ Exhibits essential features of one-round sponge inversion

e “Even simple questions relating to (superposition access to)
random permutations are to the best of our knowledge not in
the scope of existing techniques, such as the following
conjecture:” [Unruh’'23]

Conjecture [Unruh'21], [Unruh'23]
Solving DSZS requires Q(1/2") quantum queries to o, ¢!
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Zero Pairs Intuition

Some facts:
@ Exactly one zero pair on average
@ Exponentially decaying probability of more

7
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First Result

@ We prove Unruh's conjecture

Theorem [CP'24]
Finding a zero pair requires 2 (\/2”) quantum queries

Proof.
A worst-to-average case reduction:
(1) Hide zero pairs at adversarial locations

(2) Re-randomize to an average-case instance, while maintaining
zero pairs (symmetrize)

Ol




Worst-Case Hardness

@ In the worst case, solution may not exist!

pw(xlly) =x[(y ®1%)
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Worst-Case Hardness with K solutions

@ Start from permutation with no zero pairs
@ Hide zero pairs in K arbitrary positions

e Inverse queries don't help, because ¢,, = ¢!

f(z)
e @ 1000
ne ® 1100
1 1000 @ >® 1000
00e ® 1100
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Symmetrization

@ Let w,o be random permutations that preserve suffix 0"
@ Sandwich a worst-case instance to get an average-case
instance (with K zero pairs)

p:=wopyo0

® 1100

e

e ® 1100
00 @ >® 100
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Symmetrization

@ Let w,o be random permutations that preserve suffix 0"
@ Sandwich a worst-case instance to get an average-case
instance (with K zero pairs)

Y =wWopy oo

0@ ® 1000
00e® —— >@ 0100
ne—— ® 1000
0@ ® 1100
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Symmetrization Soundness

@ Main technical insight: group theoretic picture
@ Permutations preserving suffix 0” form a subgroup

@ Double cosets are permutations with fixed number of zero
pairs

Symmetrization Lemma

Multiplying by random elements of the left and right subgroups,
re-randomizes over the double coset.
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Proof Review

Theorem [CP'24]

Finding a zero pair requires 2 (\/2”) quantum queries to @, ™

Proof(ish):
Worst, Case Hard
| «— > |Con
e S— >» |y
<« - >» ()

Symmetrization

@ Symmetrizing preserves the hardness!
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Quantum Security of the Sponge

e For simplicity, restrict to one round
o Top wire is size r = rate

@ Bottom wire is size ¢ = capacity

) ————> —> Y

mw

Indifferentiability
00000

Conclusion
oo
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Indifferentiability Definition

o Indifferentiability gives a way to lift random oracle lower
bounds to concrete hash functions

@ Requires simulating a permutation, given just a random oracle

REAL | IDEAL
D ! | D ]
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Sponge Indifferentiability

@ We can prove indifferentiability using symmetrization
@ Idea: hide a random function inside the sponge, then
symmetrize
o Let us assume that r = ¢ for simplicity?
@ To hide a function h in the Sponge:
[x) Y_ h(x)
o) R N «
@ The sponge hash will be h

2we require r < ¢
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Symmetrizing the Sponge

Characterization Lemma [CPZ'24]

There exists double cosets Cy, ... Cp = H\ S2n /K satisfying:
(=) m, 7" € G if and only if Sp™ = Sp™

Conclusion
oo

@ We can symmetrize ¢, while maintaining sponge

Constructed Permutations

<« > |Cp,
e S— > |Ch
<« p >» ()

Symmetrization
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Summary of results

@ Our simulator is perfectly secure

@ Prior work [Zhandry'21] requires a query bound, even
classically

@ Our notion also captures adversaries with inefficient
pre-computation

@ Implies new quantum and classical results for one round
Sponge:
(1) Tight space-time tradeoffs for inversion

(2) Generic, composable security in any game with
pre-computation

(3) Tight bounds for one-wayness, collision resistance, . ..

Conclusion
oo
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Future Directions

o Indifferentiability of the full Sponge construction?

(—) This requires overcoming the stateful simulation barrier
@ Other applications of symmetrizing over double cosets?
@ Other applications of Indifferentiability with Pre-computation?
@ See also concurrent work by Majenz, Malavolta, and Walter

(—) Similar results to [CP'24], different techniques
(—) Talk on Friday morning!



Thank you!
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