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Abstract

• Quantum algorithms have the potential to enable new applications in scientific computing
• A current candidate is quickly solving nonlinear differential equations
• To find applications of quantum, we need to know where not to look
• We provide formal evidence that (certain) quantum algorithms cannot efficiently simulate the Navier Stokes Equation, with
infinite Reynolds number

Algorithm model

• Suppose we want to simulate a system described by equations Eqns, to time T
• Example: Navier Stokes Equations (incompressible)

∂u

∂t
+ (u · ∇ )u = −1

ρ
∇p + ν∇2u

∇ · u = 0

• Let us ignore discretization, consider only scaling w.r.t. T
• Let X be the set of dynamical variables (velocities + pressures at all points for incompressible NSE)
• Let αx(t) for x ∈ X be the value of x at time t
• We encode these variables quantumly asa

|ψ(t)⟩ ∝
∑
x∈X

αx(t) |x⟩

• We allow the algorithm to make quantum queries to coefficients in Eqns

Figure 1: A general quantum algorithm for simulating nonlinear differential equations

• This encompasses nearly all known quantum algorithms
• Important caveat: it does not encompass all quantum algorithms
• Unconditional hardness is often beyond the abilities of modern computer science, not specific to this problem

How to prove lower bounds

• One way is to reduce the problem to one known to be hard
• A problem known to be hard: distinguishing close quantum states

Figure 2: Given either |ψ⟩ or |ϕ⟩, it is hard to tell which

• In particular, states ϵ-far require ≈ ϵ−1 copies to distinguish
• When ϵ is exponentially small, this problem is hard
• However, non-linear dynamics can quickly pry apart close states
• This idea was introduced by Abrams & Lloyd (1998)

awe also need ∥ψ(0)∥ as input.

Fluid instabilities

• We can prove a lower bound by finding exponentially diverging solutions
• Many known examples for the Navier Stokes Equations! Instabilities, chaos, etc.
• For this work, we use the Kelvin Helmholtz instability

Figure 3: The Kelvin Helmholtz instability, Shah et al. (2023)

• Two sheets of fluid with a velocity discontinuity at the interface is a fixed point of NSE
• However, small perturbations to this fixed point result in exponential divergence, followed by roll-up
• We can use the initial exponential divergence to show a lower bound

The reduction

• Suppose that quantum algorithm A was able to simulate the NSE efficiently
• By efficient, we mean simulating to time T requires poly(T ) resources
• Let |ψ(0)⟩ be the fixed point in Kelvin-Helmholtz
• Let |ϕ(0)⟩ be the fixed point, perturbed by ϵ

Figure 4: Evolution of states |ψ⟩ and |ϕ⟩.

• After T ≈ log ϵ−1, the two states are far apart!
• So if A can simulate using polyT copies, it can also discriminate ϵ-far states with polylog(ϵ−1) copies
• This is a contradiction! So A needs exp(T ) copies, and therefore exp(T ) resources

Omitted Details

• Divergence of trajectories needs to happen on a region which is a non-negligible fraction of the space
• Kelvin-Helmholtz is usually formulated with infinite spatial extent, we analyze a version on a compact spatial region with periodic
boundary conditions

• One further needs to bound the difference between the linearized and full NSE, to show that the full dynamics also distinguish close
states (This is W.I.P.)
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