

COLLEGE OF COMPUTER, MATHEMATICAL, & NATURAL SCIENCES

- Quantum algorithms have the potential to enable new applications in scientific computing
- A current candidate is quickly solving nonlinear differential equations
- To find applications of quantum, we need to know where not to look
- We provide formal evidence that (certain) quantum algorithms cannot efficiently simulate the Navier Stokes Equation, with infinite Reynolds number

Algorithm model

- Suppose we want to simulate a system described by equations Eqns, to time T• Example: Navier Stokes Equations (incompressible)
 - $rac{\partial \mathbf{u}}{\partial t} + (\,\mathbf{u}\cdot
 abla\,)\,\mathbf{u} = -rac{1}{
 ho}
 abla
 ho +
 u
 abla^2 \mathbf{u}$ $abla \cdot \mathbf{u} = 0$
- Let us ignore discretization, consider only scaling w.r.t. T
- Let \mathcal{X} be the set of dynamical variables (velocities + pressures at all points for incompressible NSE) • Let $\alpha_x(t)$ for $x \in \mathcal{X}$ be the value of x at time t
- We encode these variables quantumly as^a

$$\ket{\psi(t)} \propto \sum_{m{x} \in \mathcal{X}} lpha_{m{x}}(t) \ket{m{x}}$$

• We allow the algorithm to make quantum queries to coefficients in Eqns

Eqns $|\psi(0)\rangle \underline{\otimes k}$ $\rightarrow |\psi(T)\rangle$

Figure 1: A general quantum algorithm for simulating nonlinear differential equations

- This encompasses nearly all known quantum algorithms
- Important caveat: it does not encompass *all* quantum algorithms
- Unconditional hardness is often beyond the abilities of modern computer science, not specific to this problem

How to prove lower bounds

- One way is to *reduce* the problem to one known to be hard
- A problem known to be hard: distinguishing close quantum states

Figure 2: Given either $|\psi\rangle$ or $|\phi\rangle$, it is hard to tell which

- In particular, states ϵ -far require $\approx \epsilon^{-1}$ copies to distinguish
- When ϵ is exponentially small, this problem is hard
- However, non-linear dynamics can quickly pry apart close states
- This idea was introduced by Abrams & Lloyd (1998)

Limitations of Quantum Algorithms for Fluid Dynamics

Abtin Ameri¹ Joseph Carolan² Andrew Childs² Hari Krovi³

¹Massachusetts Institute of Technology ²University of Maryland ³Riverlane

Fluid instabilities

- For this work, we use the Kelvin Helmholtz instability

The reduction

- Let $|\psi(0)\rangle$ be the fixed point in Kelvin-Helmholtz

- After $T \approx \log \epsilon^{-1}$, the two states are far apart!

Omitted Details

- boundary conditions
- states (This is W.I.P.)

References

problems. Phys. Rev. Lett., 81, 3992–3995.

• We can prove a lower bound by finding exponentially diverging solutions • Many known examples for the Navier Stokes Equations! Instabilities, chaos, etc.

Figure 3: The Kelvin Helmholtz instability, Shah et al. (2023)

• Two sheets of fluid with a velocity discontinuity at the interface is a fixed point of NSE • However, small perturbations to this fixed point result in exponential divergence, followed by roll-up • We can use the initial exponential divergence to show a lower bound

• Suppose that quantum algorithm \mathcal{A} was able to simulate the NSE efficiently • By *efficient*, we mean simulating to time T requires poly(T) resources

• So if \mathcal{A} can simulate using poly T copies, it can also discriminate ϵ -far states with polylog(ϵ^{-1}) copies

• This is a contradiction! So \mathcal{A} needs exp(T) copies, and therefore exp(T) resources

• Divergence of trajectories needs to happen on a region which is a non-negligible fraction of the space • Kelvin-Helmholtz is usually formulated with infinite spatial extent, we analyze a version on a compact spatial region with periodic

• One further needs to bound the difference between the linearized and full NSE, to show that the full dynamics also distinguish close

Abrams, D. S., & Lloyd, S. (1998, Nov). Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and # P

Liu, J.-P., Øie Kolden, H., Krovi, H. K., Loureiro, N. F., Trivisa, K., & Childs, A. M. (2021). Efficient quantum algorithm for dissipative nonlinear differential equations. Proceedings of the National Academy of Sciences, 118(35).

Shah, A., Sohaib, M., & Yuan, L. (2023). A numerical method for two-phase flow with its application to the kelvin-helmholtz instability problem. Communications in Nonlinear Science and Numerical Simulation, 125, 107334.

