[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)
0000000000 0000000000 0000000 000000 0

Succinct Fermion Data Structures

Joseph Carolan¹ Luke Schaeffer²

¹University of Maryland College Park

²University of Waterloo

- Consider storing $\lt thing$ in 1 out of K configurations
- We will want to query/update $\lt thing$
- The choice of representation impacts efficiency
- For example, consider storing bitstrings $\{0,1\}^n$
- We can store it as a **bitstring**:

 (\rightarrow) easy to flip a bit!

• Or as a sorted list of pointers:

$$
\begin{array}{c|c} 2 & 4 & 8 \end{array}
$$

 (\rightarrow) easy to find the *t*-th one!

[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)
 Conclusion COO00000 000000 000000 000000 000000 0

Succinct Data Structures

- Consider storing $\lt thing$ in 1 out of K configurations
- Needs at least $\mathcal{I} := \lceil \log K \rceil$ bits
- \bullet Usually trade-off: space \leftrightarrow time

Definition

Succinct: A representation using $\mathcal{I} + o(\mathcal{I})$ many bits

 (\rightarrow) Fraction of unnecessary information goes to 0

• Succinct data structures have found many (classical) applications in big data

[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)

Fermions

What is a **fermion?**

- Building block of matter
- Any half-odd integer spin particle
- Show up in physics, chemistry, etc.

Standard Model of Elementary Particles

[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)
 $\begin{array}{ccc}\n0.000000 \\
0.0000000 \\
0.000000\n\end{array}$

Fermion Data Structures

- Quantum computers are made up of qubits
- To simulate physics/chemistry, we want to encode fermions
- Idea: find qubit operators that obey fermion rules
- We will see that this is a data structures problem
- In particular:
	- (1) Represent $\mathsf{bitstrings}\; \{0,1\}^M$ on a quantum computer
	- (2) Support efficient sign-rank and bit-flip queries

What we will need:

- Fermion $=$ a thing you put in a mode
- a † $_j^{\prime}$ puts a fermion in the j -th mode
- Finite number of modes $(M = 8)$
- Finite number of fermions ($F = 2$)
- At most one fermion per mode
- **•** Fermions anticommute

Definition

Majorana operators (more convenient basis):

$$
\gamma_j := a_j^{\dagger} + a_j \qquad \qquad \bar{\gamma}_j := i(a_j^{\dagger} - a_j)
$$

- Fock states, denoted $|\textbf{b}\rangle_{f}$ correspond to bitstrings $\textbf{b}\in\{0,1\}^{M}$
- The state $\ket{0^M}_f$ has no fermions ("vacuum state")

Definition

Fock states are acted on by majorana operators as:

$$
\gamma_j \left| \mathbf{b}_1 ... \mathbf{b}_j ... \mathbf{b}_M \right\rangle_f = \left(\prod_{n=1}^{j-1} (-1)^{\mathbf{b}_n} \right) \left| \mathbf{b}_1 ... (\neg \mathbf{b}_j) ... \mathbf{b}_M \right\rangle_f,
$$

$$
\bar{\gamma}_j \left| \mathbf{b}_1 ... \mathbf{b}_j ... \mathbf{b}_M \right\rangle_f = i \cdot \left(\prod_{n=1}^j (-1)^{\mathbf{b}_n} \right) \left| \mathbf{b}_1 ... (\neg \mathbf{b}_j) ... \mathbf{b}_M \right\rangle_f.
$$

Definitions

For bitstring $\mathbf{b} \in \{0,1\}^n$, index $j \in [n]$, define:

sgn-rank(**b**,
$$
j
$$
) := $\prod_{n=1}^{j} (-1)^{b_n}$ ("sign rank")
bit-flip(**b**, j) := **b**₁...(\neg **b**_j)...**b**_n ("bit flip")

With these in hand, can rewrite:

Definition

$$
\gamma_j \ket{\mathbf{b}}_f = \text{sgn-rank}(\mathbf{b}, j - 1) | \text{bit-flip}(\mathbf{b}, j) \rangle_f
$$

$$
\bar{\gamma}_j \ket{\mathbf{b}}_f = i \cdot \text{sgn-rank}(\mathbf{b}, j) | \text{bit-flip}(\mathbf{b}, j) \rangle_f
$$

[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)

Example Fermion Data Structures

- The complexity of majoranas is intimately tied to the complexity of running most simulation algorithms
- The natural representation maps $|{\bf b}\rangle_f$ to $|{\bf b}\rangle$
- Called "Jordan Wigner" [\[1\]](#page-26-1)
- The sgn-rank becomes a prefix list of Pauli Z's
- The bit-flip becomes a single Pauli X
- **Problem:** requires M qubits, even when F is small
- Problem: requires $\Omega(M)$ gates for most operations

[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)

Succinct Fermion Data Structures

- Early quantum computers will be very small
- Therefore, a recent line of work aims to improve space efficiency of fermion encodings
- Many works exploit that physical systems often conserve the total number of particles
- This result: how to represent such fermions **succinctly** and efficiently on a quantum computer
- Note: time efficiency refers to quantum **circuit** complexity

Suppose there are F (conserved) fermions in M modes, satisfying

 $F = o(M)$

- The minimum space usage is $\mathcal{I} := \lceil \log {M \choose F} \rceil$
- Prior works:

Note that prior succinct structures require exponential time

[Background](#page-1-0) **[Part 1: Sparse Systems](#page-10-0)** [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)
000000000 000000000 0000000 000000 0

Sorted List Encoding

- A Fock state (above) is essentially a bitstring
- We can store it as a bitstring:

0 0 1 0 1 0 0 0

• Or as a sorted list of pointers:

$$
\begin{array}{|c|c|c|}\n\hline\n2 & 4 \\
\hline\n\end{array}
$$

- Recall that sign-rank is a prefix string of Z 's on the bitstring
- On a sorted list, this can be done with register comparisons Bitvector: Sorted List:

- **•** Performing **bit-flip** is an insertion/deletion
- Somewhat more intricate, but can be done in linear time
- Unfortunately, neither representation is succinct over $F = o(M)!$

[Background](#page-1-0) **[Part 1: Sparse Systems](#page-10-0)** [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)
0000000000 00000000 0000000 000000

Succinct Encoding

- Consider $M = 16$, $F = 3$
- Sorted list, in binary:

- The red qubits are non-decreasing
- Possibilities: 000, 001, 011, 111, so 2 qubits suffice
- There is redundancy in top \approx log F qubits of each pointer
- **Store them via stars and bars instead**
- This cuts down $O(\log F)$ MSBs to $O(1)$ bits
- \bullet This is a succinct representation¹

¹When $F = o(M)$

[Background](#page-1-0) **[Part 1: Sparse Systems](#page-10-0)** [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)
000000000 0000**00000** 0000000 000000

Succinct Representation

- The MSBs and LSBs can be paired up from the ordering
- **Problem:** The MSBs cannot be efficiently accessed

[Background](#page-1-0) **[Part 1: Sparse Systems](#page-10-0)** [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)
000000000 0000000000 0000000 000000

Succinct Tree Structure

- We remedy this with a certain sum tree
- Each node stores the number of ones in its left subtree

[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)

Performing Comparisons

- Comparisons involve reconstructing a given MSB efficiently
- To do this, we walk down our sum tree

- Bit flips correspond to inserting/deleting from MSBs
- Result: a list rotation

Suppose there are F (conserved) fermions in M modes, satisfying

- We achieve succinctness with *linear* gate complexity
- This beats many prior encodings in time as well as space
- Bonus: our circuits are log depth

[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)

Prior Work on Dense Systems

Suppose there are F (conserved) fermions in M modes, satisfying

 $F = \Theta(M)$.

- "Constant filling" is often relevant in highly entangled systems
- **However, few known ways to save meaningful space**

- Prior succinct structures require exponential complexity
- **•** Idea from last slides is not succinct here
- **•** Even a **single bit** of redundancy per fermion is too much

Implicit Labels

- Starting point: enumerate $\binom{M}{F}$ strings in lexicographic order
- Store a pointer to positions in this list
- Clearly space optimal, $\mathcal I$ usage!
- But how to do gates efficiently?
- Prior work [\[5,](#page-26-6) [7\]](#page-26-7) explores similar ideas, results in

Gate Cost = $exp(\mathcal{I})$

[Part 1: Sparse Systems](#page-10-0) **[Part 2: Dense Systems](#page-19-0)** [Conclusion](#page-25-0) [References](#page-26-0)

An Observation

- Consider lexicographic order
- The MSB can be "accessed"
- Computed by a fixed comparison on label
- Can apply a phase, i.e. for signrank
- **Problem:** How to bitflip?
- **Problem: LSB is hidden...**

$$
\mathcal{L}(00011) = 0 \n\mathcal{L}(00101) = 1 \n\mathcal{L}(00110) = 2 \n\mathcal{L}(01001) = 3 \n\mathcal{L}(01010) = 4 \n\mathcal{L}(01100) = 5 \n\mathcal{L}(10001) = 6 \n\mathcal{L}(10010) = 7 \n\mathcal{L}(10100) = 8 \n\mathcal{L}(11000) = 9
$$

[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)
0000000000 000000000 0000000 000000

Performing Bit Flips

- We include a pool of unused labels, allowing some insertions/deletions
- We can swap contiguous labels using controlled modular arithmetic
- Can be broken into "rotations"
- **e** Each rotation is a controlled modular addition

[Background](#page-1-0) [Part 1: Sparse Systems](#page-10-0) [Part 2: Dense Systems](#page-19-0) [Conclusion](#page-25-0) [References](#page-26-0)
0000000000 000000000 000000 000000 0

Reaching Other Bits

- \bullet We will walk through a sequence of M orderings
- **•** Each ordering will "expose" a different bit
- Each re-ordering is a sequence of many transposition

- Key insight: modular arithmetic allows us to do many transpositions at once, for the same cost as one transposition
- Many more technical details swept under the rug...

Suppose there are F (conserved) fermions in M modes, satisfying

 $F = \Theta(M)$.

• Comparison to prior space efficient encodings:

- \bullet Our work is (even better than) succinct, uses $O(1)$ ancilla
- Achieves exponentially improved time complexity for majorana operators

Conclusion

- Representing fermions is storing bit-vectors
- It suffices to perform sign rank and bit flip efficiently
- We use data structures ideas to significantly improve on space and time of prior encodings
- Many open questions:
	- (1) What about other physical symmetries?
	- (2) Bring down the $O(\mathcal{I}^3)$ scaling in implicit structure?
	- (3) Reduce the T -gate count?

Thank you!

- [1] P. Jordan and E. Wigner. "On the Paulian prohibition of equivalence.". In: Z. Physik 47 (1928), pp. 631–651.
- [2] Ryan Babbush et al. "Exponentially more precise quantum simulation of fermions in the configuration interaction representation". In: Quantum Science and Technology 3.1 (Dec. 2017), p. 015006.
- [3] Sergey Bravyi et al. Tapering off qubits to simulate fermionic Hamiltonians. 2017.
- [4] Mark Steudtner and Stephanie Wehner. "Fermion-to-qubit mappings with varying resource requirements for quantum simulation". In: New Journal of Physics 20.6 (June 2018), p. 063010.
- [5] Brent Harrison et al. Reducing the qubit requirement of Jordan-Wigner encodings of N-mode, K-fermion systems from N to $\lceil \log_2 {N \choose K} \rceil$. Nov. 2022.
- [6] William Kirby et al. "Second-Quantized Fermionic Operators with Polylogarithmic Qubit and Gate Complexity". In: PRX Quantum 3 (2 June 2022), p. 020351.
- [7] Yu Shee et al. "Qubit-efficient encoding scheme for quantum simulations of electronic structure". In: Phys. Rev. Res. 4 (2 May 2022), p. 023154.