
Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Succinct Fermion Data Structures

Joseph Carolan1 Luke Schaeffer2

1University of Maryland College Park

2University of Waterloo

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Data Structures

Consider storing <thing> in 1 out of K configurations

We will want to query/update <thing>

The choice of representation impacts efficiency

For example, consider storing bitstrings {0, 1}n

We can store it as a bitstring:

0 0 0 0 0 0 0 0 01 1 1

(→) easy to flip a bit!

Or as a sorted list of pointers:

2 4 8

(→) easy to find the t-th one!

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Succinct Data Structures

Consider storing <thing> in 1 out of K configurations

Needs at least I := ⌈logK⌉ bits
Usually trade-off: space ↔ time

Definition

Succinct: A representation using I + o(I) many bits
(→) Fraction of unnecessary information goes to 0

Succinct data structures have found many (classical)
applications in big data

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Fermions

What is a fermion?

Building block of
matter

Any half-odd inte-
ger spin particle

Show up in
physics, chemistry,
etc.

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Fermion Data Structures

Quantum computers are made up of qubits

To simulate physics/chemistry, we want to encode fermions

Idea: find qubit operators that obey fermion rules

We will see that this is a data structures problem

In particular:

(1) Represent bitstrings {0, 1}M on a quantum computer
(2) Support efficient sign-rank and bit-flip queries

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Fermions

What we will need:

a†2 a†4

Fermion := a thing you put in a mode

a†j puts a fermion in the j-th mode

Finite number of modes (M = 8)

Finite number of fermions (F = 2)

At most one fermion per mode

Fermions anticommute

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Fermions

Definition

Majorana operators (more convenient basis):

γj := a†j + aj γ̄j := i(a†j − aj)

Fock states, denoted |b⟩f correspond to bitstrings b ∈ {0, 1}M
The state

∣∣0M〉
f
has no fermions (“vacuum state”)

Definition

Fock states are acted on by majorana operators as:

γj |b1...bj ...bM⟩f =

(
j−1∏
n=1

(−1)bn
)
|b1...(¬bj)...bM⟩f ,

γ̄j |b1...bj ...bM⟩f = i ·

(
j∏

n=1

(−1)bn
)
|b1...(¬bj)...bM⟩f .

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Fermions

Definitions

For bitstring b ∈ {0, 1}n, index j ∈ [n], define:

sgn-rank(b, j) :=

j∏
n=1

(−1)bn (“sign rank”)

bit-flip(b, j) :=b1 . . . (¬bj) . . .bn (“bit flip”)

With these in hand, can rewrite:

Definition

γj |b⟩f =sgn-rank(b, j − 1) |bit-flip(b, j)⟩f
γ̄j |b⟩f =i · sgn-rank(b, j) |bit-flip(b, j)⟩f

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Example Fermion Data Structures

The complexity of majoranas is intimately tied to the
complexity of running most simulation algorithms

The natural representation maps |b⟩f to |b⟩
Called “Jordan Wigner” [1]

The sgn-rank becomes a prefix list of Pauli Z ’s

The bit-flip becomes a single Pauli X

Problem: requires M qubits, even when F is small

Problem: requires Ω(M) gates for most operations

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Succinct Fermion Data Structures

Early quantum computers will be very small

Therefore, a recent line of work aims to improve space
efficiency of fermion encodings

Many works exploit that physical systems often conserve the
total number of particles

This result: how to represent such fermions succinctly and
efficiently on a quantum computer

Note: time efficiency refers to quantum circuit complexity

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Sparse Systems

Suppose there are F (conserved) fermions in M modes, satisfying

F = o(M)

The minimum space usage is I := ⌈log
(M
F

)
⌉

Prior works:

Encoding Space Time

Optimal Degree[6] Ω(I2 log2M) Ω(I2 log3M)
Qubit Tapering/Segment[3, 4] M − o(M) Ω(F 2)
Configuration Interaction[2] Ω(F logM) Incomparable

Permutation Basis[5] I Ω(M22I)

Qubit Efficient[7] I 2Ω(I)

Note that prior succinct structures require exponential time

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Sorted List Encoding

a†2 a†4

A Fock state (above) is essentially a bitstring

We can store it as a bitstring:

0 0 0 0 0 01 1

Or as a sorted list of pointers:

2 4

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Performing Sign Rank

Recall that sign-rank is a prefix string of Z ’s on the bitstring

On a sorted list, this can be done with register comparisons

Bitvector: Sorted List:

0 0 0 0 0 01 1

Z Z Z Z

2 4

CZ<4 CZ<4

Performing bit-flip is an insertion/deletion

Somewhat more intricate, but can be done in linear time

Unfortunately, neither representation is succinct over
F = o(M)!

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Succinct Encoding

Consider M = 16, F = 3

Sorted list, in binary:

0 0 0 0 0 01 1 10 1 1

p0 p1 p2

The red qubits are non-decreasing

Possibilities: 000, 001, 011, 111, so 2 qubits suffice

There is redundancy in top ≈ log F qubits of each pointer

Store them via stars and bars instead

This cuts down O(log F) MSBs to O(1) bits

This is a succinct representation1

1When F = o(M)

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Succinct Representation

The MSBs and LSBs can be paired up from the ordering

Problem: The MSBs cannot be efficiently accessed

MSBs: 0 0 0 0 0 0 01 1 1 1 1 1 1 1

LSBs: 7 3 5 4 6 2 4 7

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Succinct Tree Structure

We remedy this with a certain sum tree

Each node stores the number of ones in its left subtree

4S0,8

3S0,4 1 S8,12

MSBs: 0 0 0 0 0 0 01 1 1 1 1 1 1 1

LSBs: 7 3 5 4 6 2 4 7

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Performing Comparisons

Comparisons involve reconstructing a given MSB efficiently

To do this, we walk down our sum tree

4S0,8

3,⊤

1S0,4 3 S8,12

3,⊤

2,⊤

i0 = 2

0,⊥

0,⊥0,⊥0,⊥

MSBs: 1 1 1 1 1 1 10 0 0 0 0 0 0 0

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Performing bit flips

Bit flips correspond to inserting/deleting from MSBs

Result: a list rotation

4S0,8

10,⊤

1S0,4 3 S8,12

2,⊤

2,⊤

flag

∞,⊤

∞,⊤ ∞,⊤ garb,⊥

MSBs: 0 0 0 0 0 0 01 1 1 1 1 1 1 1

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Main Results

Suppose there are F (conserved) fermions in M modes, satisfying

F = o(M)

Encoding Space Time

Optimal Degree[6] Ω(I2 log2M) Ω(I2 log3M)
Qubit Tapering/Segment[3, 4] M − o(M) Ω(F 2)

Configuration Interaction Ω(F logM) Incomparable
Permutation Basis[5] I Ω(M22I)

Qubit Efficient[7] I 2Ω(I)

This work I + o(I) O(I)

We achieve succinctness with linear gate complexity

This beats many prior encodings in time as well as space

Bonus: our circuits are log depth

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Prior Work on Dense Systems

Suppose there are F (conserved) fermions in M modes, satisfying

F = Θ(M).

“Constant filling” is often relevant in highly entangled systems

However, few known ways to save meaningful space

Encoding Space Time

Qubit Tapering/Segment[3, 4] M − O(1) Ω(I2)
Permutation Basis[5] I Ω(I22I)
Qubit Efficient[7] I 2Ω(I)

Prior succinct structures require exponential complexity

Idea from last slides is not succinct here

Even a single bit of redundancy per fermion is too much

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Implicit Labels

Starting point: enumerate
(M
F

)
strings in lexicographic order

Store a pointer to positions in this list

Clearly space optimal, I usage!

But how to do gates efficiently?

Prior work [5, 7] explores similar ideas, results in

Gate Cost = exp(I)

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

An Observation

Consider lexicographic order

The MSB can be “accessed”

Computed by a fixed compari-
son on label

Can apply a phase, i.e. for sign-
rank

Problem: How to bitflip?

Problem: LSB is hidden...

L(00011) = 0

L(00101) = 1

L(00110) = 2

L(01001) = 3

L(01010) = 4

L(01100) = 5

L(10001) = 6

L(10010) = 7

L(10100) = 8

L(11000) = 9

MSB 0

MSB 1

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Performing Bit Flips

We include a pool of unused
labels, allowing some inser-
tions/deletions

We can swap contiguous la-
bels using controlled modular
arithmetic

Can be broken into “rota-
tions”

Each rotation is a controlled
modular addition

A B

B A

B A

B A

B A

← |A|

← |B|

→ |A|

← 2I−1 − |B|

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Reaching Other Bits

We will walk through a sequence of M orderings

Each ordering will “expose” a different bit

Each re-ordering is a sequence of many transposition

A1 A2 . . . An B1 B2 . . . Bn pool

A1 B1 A2 B2 . . . An Bn

Key insight: modular arithmetic allows us to do many
transpositions at once, for the same cost as one transposition

Many more technical details swept under the rug...

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Main Results

Suppose there are F (conserved) fermions in M modes, satisfying

F = Θ(M).

Comparison to prior space efficient encodings:

Encoding Space Time

Qubit Tapering/Segment[3, 4] M − O(1) Ω(I2)
Permutation Basis[5] I Ω(I22I)
Qubit Efficient[7] I 2Ω(I)

This work I + O(1) O(I3)

Our work is (even better than) succinct, uses O(1) ancilla

Achieves exponentially improved time complexity for majorana
operators

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Conclusion

Representing fermions is storing bit-vectors

It suffices to perform sign rank and bit flip efficiently

We use data structures ideas to significantly improve on space
and time of prior encodings

Many open questions:

(1) What about other physical symmetries?
(2) Bring down the O(I3) scaling in implicit structure?
(3) Reduce the T -gate count?

Background Part 1: Sparse Systems Part 2: Dense Systems Conclusion References

Thank you!
[1] P. Jordan and E. Wigner. “On the Paulian prohibition of equivalence.”.

In: Z. Physik 47 (1928), pp. 631–651.

[2] Ryan Babbush et al. “Exponentially more precise quantum simulation of
fermions in the configuration interaction representation”. In: Quantum
Science and Technology 3.1 (Dec. 2017), p. 015006.

[3] Sergey Bravyi et al. Tapering off qubits to simulate fermionic
Hamiltonians. 2017.

[4] Mark Steudtner and Stephanie Wehner. “Fermion-to-qubit mappings with
varying resource requirements for quantum simulation”. In: New Journal
of Physics 20.6 (June 2018), p. 063010.

[5] Brent Harrison et al. Reducing the qubit requirement of Jordan-Wigner
encodings of N-mode, K-fermion systems from N to ⌈log2

(
N
K

)
⌉. Nov.

2022.

[6] William Kirby et al. “Second-Quantized Fermionic Operators with
Polylogarithmic Qubit and Gate Complexity”. In: PRX Quantum 3 (2
June 2022), p. 020351.

[7] Yu Shee et al. “Qubit-efficient encoding scheme for quantum simulations
of electronic structure”. In: Phys. Rev. Res. 4 (2 May 2022), p. 023154.

	Background
	Part 1: Sparse Systems
	Part 2: Dense Systems
	Conclusion
	References

