Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

Succinct Fermion Data Structures

Joseph Carolan¹ Luke Schaeffer²

¹University of Maryland College Park

²University of Waterloo

Background •oooooooo	Part 1: Sparse Systems	Part 2: Dense Systems	Conclusion O	References
Data Stru	uctures			

- Consider storing < thing> in 1 out of K configurations
- We will want to query/update <thing>
- The choice of representation impacts efficiency
- For example, consider storing bitstrings $\{0,1\}^n$
- We can store it as a **bitstring**:

 (\rightarrow) easy to flip a bit!

• Or as a sorted list of pointers:

(
ightarrow) easy to find the *t*-th one!

Background ○●○○○○○○○ Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

Succinct Data Structures

- Consider storing < thing> in 1 out of K configurations
- Needs at least $\mathcal{I} := \lceil \log K \rceil$ bits
- Usually trade-off: space \leftrightarrow time

Definition

Succinct: A representation using $\mathcal{I} + o(\mathcal{I})$ many bits (\rightarrow) Fraction of unnecessary information goes to 0

 Succinct data structures have found many (classical) applications in big data

Background
000000000

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

Fermions

What is a **fermion**?

- Building block of matter
- Any half-odd integer spin particle
- Show up in physics, chemistry, etc.

Standard Model of Elementary Particles

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

Fermion Data Structures

- Quantum computers are made up of qubits
- To simulate physics/chemistry, we want to encode fermions
- Idea: find qubit operators that obey fermion rules
- We will see that this is a data structures problem
- In particular:
 - (1) Represent **bitstrings** $\{0, 1\}^M$ on a quantum computer
 - (2) Support efficient sign-rank and bit-flip queries

Background ○○○○●○○○○	Part 1: Sparse Systems	Part 2: Dense Systems	Conclusion O	References
Fermions				

What we will need:

- \bullet Fermion := a thing you put in a mode
- a_i^{\dagger} puts a fermion in the *j*-th mode
- Finite number of modes (M = 8)
- Finite number of fermions (F = 2)
- At most one fermion per mode
- Fermions anticommute

Background ○○○○●○○○	Part 1: Sparse Systems	Part 2: Dense Systems	Conclusion O	References
Fermions				

Definition

Majorana operators (more convenient basis):

$$\gamma_j := a_j^{\dagger} + a_j \qquad \qquad \bar{\gamma}_j := i(a_j^{\dagger} - a_j)$$

- Fock states, denoted $|\mathbf{b}
 angle_f$ correspond to bitstrings $\mathbf{b} \in \{0,1\}^M$
- The state $|0^M\rangle_f$ has no fermions ("vacuum state")

Definition

Fock states are acted on by majorana operators as:

$$\gamma_j |\mathbf{b}_1...\mathbf{b}_j...\mathbf{b}_M\rangle_f = \left(\prod_{n=1}^{j-1} (-1)^{\mathbf{b}_n}\right) |\mathbf{b}_1...(\neg \mathbf{b}_j)...\mathbf{b}_M\rangle_f,$$

$$\bar{\gamma}_j |\mathbf{b}_1...\mathbf{b}_j...\mathbf{b}_M\rangle_f = i \cdot \left(\prod_{n=1}^{j} (-1)^{\mathbf{b}_n}\right) |\mathbf{b}_1...(\neg \mathbf{b}_j)...\mathbf{b}_M\rangle_f.$$

Background ○○○○○●○○	Part 1: Sparse Systems	Part 2: Dense Systems	Conclusion O	References
Fermions				

Definitions

For bitstring $\mathbf{b} \in \{0,1\}^n$, index $j \in [n]$, define:

$$sgn-rank(\mathbf{b}, j) := \prod_{n=1}^{j} (-1)^{\mathbf{b}_n} \qquad ("sign rank")$$

bit-flip(\mathbf{b}, j) := $\mathbf{b}_1 \dots (\neg \mathbf{b}_j) \dots \mathbf{b}_n$ ("bit flip")

With these in hand, can rewrite:

Definition

$$\begin{array}{l} \gamma_{j} \left| \mathbf{b} \right\rangle_{f} = \mathsf{sgn-rank}(\mathbf{b}, j-1) \left| \mathsf{bit-flip}(\mathbf{b}, j) \right\rangle_{f} \\ \bar{\gamma}_{j} \left| \mathbf{b} \right\rangle_{f} = i \cdot \mathsf{sgn-rank}(\mathbf{b}, j) \left| \mathsf{bit-flip}(\mathbf{b}, j) \right\rangle_{f} \end{array}$$

Background Part 1 000000000 00000

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

Example Fermion Data Structures

- The complexity of majoranas is intimately tied to the complexity of running most simulation algorithms
- ullet The natural representation maps $|{\bf b}\rangle_f$ to $|{\bf b}\rangle$
- Called "Jordan Wigner" [1]
- The sgn-rank becomes a prefix list of Pauli Z's
- The bit-flip becomes a single Pauli X
- Problem: requires M qubits, even when F is small
- **Problem:** requires $\Omega(M)$ gates for most operations

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusio

References

Succinct Fermion Data Structures

- Early quantum computers will be very small
- Therefore, a recent line of work aims to improve space efficiency of fermion encodings
- Many works exploit that physical systems often conserve the total number of particles
- This result: how to represent such fermions succinctly and efficiently on a quantum computer
- Note: time efficiency refers to quantum circuit complexity

Background	Part 1: Sparse Systems	Part 2: Dense Systems	Conclusion O	References
Sparse S	ystems			

Suppose there are F (conserved) fermions in M modes, satisfying

F = o(M)

- The minimum space usage is $\mathcal{I} := \lceil \log {M \choose F} \rceil$
- Prior works:

Encoding	Space	Time
Optimal Degree[6]	$\Omega(\mathcal{I}^2 \log^2 M)$	$\Omega(\mathcal{I}^2 \log^3 M)$
Qubit Tapering/Segment[3, 4]	M - o(M)	$\Omega(F^2)$
Configuration Interaction[2]	$\Omega(F \log M)$	Incomparable
Permutation Basis[5]	\mathcal{I}	$\Omega(M^2 2^{\mathcal{I}})$
Qubit Efficient[7]	\mathcal{I}	$2^{\Omega(\mathcal{I})}$

• Note that prior succinct structures require exponential time

 Background
 Part 1: Sparse Systems
 Part 2: Dense Systems
 Conclusion
 References

 Sorted List Encoding

- A Fock state (above) is essentially a bitstring
- We can store it as a bitstring:

• Or as a sorted list of pointers:

Background	Part 1: Sparse Systems	Part 2: Dense Systems	Conclusion O	References
Performir	ng Sign Rank			

- Recall that sign-rank is a prefix string of Z's on the bitstring
- On a sorted list, this can be done with register comparisons Bitvector: Sorted List:

- Performing **bit-flip** is an insertion/deletion
- Somewhat more intricate, but can be done in linear time
- Unfortunately, neither representation is succinct over
 F = o(M)!

Background	Part 1: Sparse Systems	Part 2: Dense Systems	Conclusion O	References
с · ,	- P			

- Succinct Encoding
 - Consider M = 16, F = 3
 - Sorted list, in binary:

- The red qubits are non-decreasing
- Possibilities: 000,001,011,111, so 2 qubits suffice
- There is redundancy in top $\approx \log F$ qubits of each pointer
- Store them via stars and bars instead
- This cuts down $O(\log F)$ MSBs to O(1) bits
- This is a succinct representation¹

¹When F = o(M)

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

Succinct Representation

- The MSBs and LSBs can be paired up from the ordering
- Problem: The MSBs cannot be efficiently accessed

Background	
000000000	

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

Succinct Tree Structure

- We remedy this with a certain sum tree
- Each node stores the number of ones in its left subtree

Background	
000000000	

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

Performing Comparisons

- Comparisons involve reconstructing a given MSB efficiently
- To do this, we walk down our sum tree

Background	Part 1: Sparse Systems ○○○○○○○●○	Part 2: Dense Systems	Conclusion O	References
Performi	ng bit flips			

- Bit flips correspond to inserting/deleting from MSBs
- Result: a list rotation

Background	Part 1: Sparse Systems ○○○○○○○●	Part 2: Dense Systems	Conclusion O	References
Main Res	sults			

Suppose there are F (conserved) fermions in M modes, satisfying

(1 1)

F = O(M)				
Encoding	Space	Time		
Optimal Degree[6]	$\Omega(\mathcal{I}^2 \log^2 M)$	$\Omega(\mathcal{I}^2 \log^3 M)$		
Qubit Tapering/Segment[3, 4]	M - o(M)	$\Omega(F^2)$		
Configuration Interaction	$\Omega(F \log M)$	Incomparable		
Permutation Basis[5]	\mathcal{I}	$\Omega(M^2 2^{\mathcal{I}})$		
Qubit Efficient[7]	\mathcal{I}	$2^{\Omega(\mathcal{I})}$		
This work	$\mathcal{I} + o(\mathcal{I})$	$O(\mathcal{I})$		

- We achieve succinctness with linear gate complexity
- This beats many prior encodings in time as well as space
- Bonus: our circuits are log depth

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusi

References

Prior Work on Dense Systems

Suppose there are F (conserved) fermions in M modes, satisfying

 $F = \Theta(M).$

- "Constant filling" is often relevant in highly entangled systems
- However, few known ways to save meaningful space

Encoding	Space	Time
Qubit Tapering/Segment[3, 4]	M - O(1)	$\Omega(\mathcal{I}^2)$
Permutation Basis[5]	\mathcal{I}	$\Omega(\hat{\mathcal{I}}^2 2^{\hat{\mathcal{I}}})$
Qubit Efficient[7]	${\mathcal I}$	$2^{\Omega(\mathcal{I})}$

- Prior succinct structures require exponential complexity
- Idea from last slides is not succinct here
- Even a single bit of redundancy per fermion is too much

Background	Part 1: Sparse Systems	Part 2: Dense Systems	Conclusion O	References
Implicit L	abels			

- Starting point: enumerate $\binom{M}{F}$ strings in lexicographic order
- Store a pointer to positions in this list
- Clearly space optimal, ${\mathcal I}$ usage!
- But how to do gates efficiently?
- Prior work [5, 7] explores similar ideas, results in

Gate $Cost = exp(\mathcal{I})$

Background	
000000000	

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

An Observation

- Consider lexicographic order
- The MSB can be "accessed"
- Computed by a fixed comparison on label
- Can apply a phase, i.e. for signrank
- Problem: How to bitflip?
- Problem: LSB is hidden...

$$\begin{array}{c} \mathcal{L}(00011) = 0 \\ \mathcal{L}(00101) = 1 \\ \mathcal{L}(00110) = 2 \\ \mathcal{L}(01001) = 3 \\ \mathcal{L}(01010) = 4 \\ \mathcal{L}(01100) = 5 \\ \mathcal{L}(10001) = 6 \\ \mathcal{L}(10010) = 7 \\ \mathcal{L}(10100) = 8 \\ \mathcal{L}(11000) = 9 \end{array} \right\}$$
 MSB 1

Part 1: Sparse Systems

Part 2: Dense Systems

Conclusion

References

Performing Bit Flips

- We include a pool of unused labels, allowing some insertions/deletions
- We can swap contiguous labels using controlled modular arithmetic
- Can be broken into "rotations"
- Each rotation is a controlled modular addition

 Background
 Part 1: Sparse Systems
 Part 2: Dense Systems
 Conclusion
 References

 00000000
 0000000
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <td

Reaching Other Bits

- We will walk through a sequence of *M* orderings
- Each ordering will "expose" a different bit
- Each re-ordering is a sequence of many transposition

- Key insight: modular arithmetic allows us to do many transpositions at once, for the same cost as one transposition
- Many more technical details swept under the rug...

Background	Part 1: Sparse Systems	Part 2: Dense Systems	Conclusion O	References
Main Res	ults			

Suppose there are F (conserved) fermions in M modes, satisfying

 $F = \Theta(M).$

• Comparison to prior space efficient encodings:

Encoding	Space	Time
Qubit Tapering/Segment[3, 4]	M - O(1)	$\Omega(\mathcal{I}^2)$
Permutation Basis[5]	${\mathcal I}$	$\Omega(\mathcal{I}^2 2^{\mathcal{I}})$
Qubit Efficient[7]	\mathcal{I}	$2^{\Omega(\mathcal{I})}$
This work	$\mathcal{I}+O(1)$	$O(\mathcal{I}^3)$

- Our work is (even better than) succinct, uses O(1) ancilla
- Achieves exponentially improved time complexity for majorana operators

Background
000000000

Conclusion

- Representing fermions is storing bit-vectors
- It suffices to perform sign rank and bit flip efficiently
- We use data structures ideas to significantly improve on space and time of prior encodings
- Many open questions:
 - (1) What about other physical symmetries?
 - (2) Bring down the $O(\mathcal{I}^3)$ scaling in implicit structure?
 - (3) Reduce the *T*-gate count?

ackground	
00000000	

Ba

Thank you!

- P. Jordan and E. Wigner. "On the Paulian prohibition of equivalence.". In: Z. Physik 47 (1928), pp. 631–651.
- [2] Ryan Babbush et al. "Exponentially more precise quantum simulation of fermions in the configuration interaction representation". In: *Quantum Science and Technology* 3.1 (Dec. 2017), p. 015006.
- [3] Sergey Bravyi et al. Tapering off qubits to simulate fermionic Hamiltonians. 2017.
- [4] Mark Steudtner and Stephanie Wehner. "Fermion-to-qubit mappings with varying resource requirements for quantum simulation". In: New Journal of Physics 20.6 (June 2018), p. 063010.
- [5] Brent Harrison et al. Reducing the qubit requirement of Jordan-Wigner encodings of N-mode, K-fermion systems from N to [log₂ (^N_K)]. Nov. 2022.
- [6] William Kirby et al. "Second-Quantized Fermionic Operators with Polylogarithmic Qubit and Gate Complexity". In: *PRX Quantum* 3 (2 June 2022), p. 020351.
- [7] Yu Shee et al. "Qubit-efficient encoding scheme for quantum simulations of electronic structure". In: *Phys. Rev. Res.* 4 (2 May 2022), p. 023154.